APPENDIX C

UPDATED DRAINAGE ANALYSIS

November 12, 2018 Revised: November 15, 2019

DRAINAGE ANALYSIS for Tioga Inn Revised Specific Plan

This drainage letter is prepared for the Tioga Inn Revised Specific Plan (project), located in Lee Vining, Mono County, CA. The letter examines (1) the required retention facilities for the project's revision to include workforce housing; and (2) the effects of the project on the capacity of the existing culverts under US 395. The following pages are provided as a summary of the results of the attached calculations.

NO. C 4103

The analysis was prepared by Triad/Holmes Associates under the direction of:

REG/

Thomas A. Platz, PE

Index:

1. Retention

- Retention Requirements
- Retention Facilities Sizing
- Treatment Requirements

2. Culvert Capacity Analysis

- Hydrologic Calculations
- Existing Culvert Capacity

Please find attached to this document the following:

Appendix A - Retention

- o Retention Facilities Sizing
- Precipitation Depth (NOAA)

Appendix B – Culverts Capacity

- o Figures 1 and 2
- Precipitation Intensity (NOAA)
- o Unit Hydrograph
- Supporting Tables and Figures

1. Retention Analysis

Retention Requirements

Retention facilities are sized for the previously approved but yet to be constructed hotel and restaurant. The retention for the proposed hotel and workforce housing is based on the Town of Mammoth Lakes (TOML) 1984 Stormdrain Design Manual. The TOML requirement is retention of a 20-year 1-hour storm event or 1 inch of precipitation from the impervious surface. Since this site is located in Lee Vining and receives less precipitation than the Town of Mammoth Lakes, the Mono County permitted to use the NOAA precipitation data for the retention calculations. Based on the NOAA Atlas 14, the precipitation depth for the 20-year 1-hour event at the location of the site is 0.84 inches. Refer to attached NOAA precipitation chart.

Even though the hotel and restaurant have been approved under the current specific plan, the required retention volume for the hotel is 9,950 cf. The workforce housing and the restaurant combined required 11,246 cf. If the restaurant is constructed separate from the housing, a separate retention basin will be installed. Restaurant parking was constructed at the time of the existing Gas Mart. Table 1 below summarizes retention volume calculations.

Table 1: Retention Volume Calculations

Volume Required = Tributary Area * Average Runoff Coefficient * Rainfall Quantity

Rainfall Quantity	0.84 in	=	0.070 ft			
	Workforce Ho		Hotel			
	Area		C	Area	С	
Roof	62,879 sf	36%	0.95	38,277 sf	25%	0.95
AC/Concrete	109,699 sf	64%	0.92	114,936 sf	75%	0.92
Total Area	172,578 sf		0.93	153,213 sf		0.93

	Volume Required
Workforce Housing and Restaurant	11,246 cf
Hotel	9,947 cf

Retention Facilities Sizing

The retention facility was preliminary sized based on the storm water volume less storm water infiltration. Infiltration rates in the sandy soil found onsite are less than one minute per inch. A conservative rate of 5 min per inch was used to calculate retention volume.

Perforated storm drain pipes are proposed to retain the required stormwater volume. Based on the attached calculation, the hotel will require 3-48" pipes with the total basin length of 167 feet. Workforce housing site will also require 3-48" pipes with the total basin length of 188 feet. The proposed location for the retention systems are shown on Sheet C3 of the Tioga Inn Revised Specific Plan.

Treatment Requirements

Treatment will be provided by the bioswales located in the landscaped areas of the parking lot. Other means of treatment may include installation of the oil removal inserts into the inlets or a separate oil treatment unit.

2. Culvert Capacity Analysis

Hydrologic Calculations

Three primary categories of the hydrologic data are considered for this analysis including surface water runoff, precipitation, and drainage basin characteristics. Data was collected during the field investigations and using existing topographic maps. Rational method is used for hydrologic analysis. All hydrologic calculations are included in Appendix B.

There are two culverts (labeled Culverts A and B) located under US 395 northeast of the future project. Upon examination of the culverts' stormwater tributary area, future project improvements fall within these tributary areas as shown in Figures 1 and 2, Appendix B. Hydrologic analysis is performed to determine the amount of flow entering the culverts during pre- and post-project conditions.

Culvert A is a 30" corrugated metal pipe located north of the future hotel and restaurant. Culvert B is a 36" corrugated metal pipe located northwest of the future workforce housing. As shown in Figures 1 and 2, approximately 65 acres is tributary to Culvert A and 100 acres is tributary to Culvert B. Future hotel and restaurant are located within Area A and is labeled Area A1, totaling 3.7 ac of impervious area. Future workforce housing is located within Area B and is labeled Area B1. Area B1 encompasses 3.8 ac of impervious surface.

Runoff coefficients for each of the tributary area are determined using Caltrans Highway Design Manual (HDM) Tables 819.2A and 819.2B and shown in tables below:

	С
Relief	0.20
Soil Infiltration	0.04
Vegetal Cover	0.06
Surface Storage	0.08
Average	0.38

Undeveloped Surface (based on HDM Figure 819.2A)

		Roofs (C=0.95)	AC (C=0.90)	Undeveloped (C=0.38)	Average C
Area A	Existing Watershed	23,743 sf	128,503 sf	2,696,937 sf	0.41
Area B	Existing Watershed	00 sf	15,833 sf	4,339,410 sf	0.38
Area A1	Future Hotel/Rest.	45,123 sf	114,936 sf	00 sf	0.91
Area B1	Future Workforce	56,033 sf	109,699 sf	00 sf	0.92

Time of concentration is the time required for the storm runoff to travel from the most remote point of the drainage basin to the point of interest. Time of concentration, Tc, is the cumulative sum of sheet flow and shallow concentrated flow. In the areas where the travel time was calculated to be less than 5 minutes, Tc of 5 minutes was assumed.

Sheet Flow		T _t =	$\frac{0.42L^{4/5}n^{4/5}}{P_2^{1/2}s^{2/5}}$			
	Surface	L	n¹	P_2^2	S	Tt
						23.6
Area A	Natural	300 ft	0.4	2.17 in	0.2300	min
						28.8
Area B	Natural	300 ft	0.4	2.17 in	0.1400	min
Area A1	Paved	100 ft	0.013	2.17 in	0.0200	1.7 min

100 ft

 $T_{t \, used}$

24 min

29 min 5 min

5 min

1.7 min

Shallow Concentrated Flow

Area B1

	Surface	S	V ⁴	L	Tt	T_{tused}
Area A	Natural	0.14	6.0 ft/s	3272 ft	9.1 min	9 min
Area B	Natural	0.13	5.8 ft/s	4152 ft	11.9 min	12 min
Area A1	Paved	0.02	2.8 ft/s	340 ft	2.0 min	5 min
Area B1	Paved	0.02	2.8 ft/s	595 ft	3.5 min	5 min

0.013

 $T_t = L/60V$

2.17 in

0.0200

Total Travel Time

		Shallow	
	Sheet Flow	Flow	Total Tc
Area A	24 min	9 min	33 min
Area B	29 min	12 min	41 min
Area A1	5 min	5 min	10 min
Area B1	5 min	5 min	10 min

Paved

Precipitation Frequency Estimates are based upon the NOAA Atlas 14 results from the website, <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>. These results are from Lee Vining, at Latitude 37.9458° Longitude 119.1114° and an approximate elevation of 7013 feet. This location represents the average precipitation estimates for the tributary area under consideration. NOAA data is included in Appendix B. Flow rate calculations have been performed for the storm of 100-year intensities using the calculated Tc.

Rational method, Q=CiA, was used to calculate the quantity of the runoff tributary to each culvert during the 100-year intensity storm. Summary of the runoff rates calculations and input parameters are shown below:

		А	С	i ₁₀₀ ³	Q 100
Area A	Existing	65.4 ac	0.41	1.76 in/hr	47 cfs
Area B	Existing	99.6 ac	0.38	1.60 in/hr	61 cfs
Area A1	Future Hotel/Rest.	3.7 ac	0.91	3.34 in/hr	11 cfs
Area B1	Future Workforce	3.8 ac	0.92	3.34 in/hr	12 cfs

Since retention systems are proposed to attenuate the flow due to the future hotel, restaurant, and workforce housing, a dimensionless hydrograph is used to determine whether the future project will add any additional flows to the culverts. Two retention systems are sized to handle a 20-year, 1 hr storm event, capable to store 11,246 cf and 9,947 cf each. Based on the unit hydrograph, at the Tc of 33 min (time of concentration for the peak 100-year flow), the volume of stormwater is 3,465 cf and 3,765 cf tributary to Culvert A and B, respectively. These volumes are significantly less than the capacity of the future retention system, and therefore, there will be no increase in flow during a design 100-year event from the future development. The 100-year storm event flows at the two culverts will actually be decreased once the site is developed and the retention system is installed. The existing and future project flows at each culvert are:

	Q ₁₀₀ (existing)	Q ₁₀₀ (proposed)
Culvert A	47 cfs	36 cfs
Culvert B	61 cfs	49 cfs

Appendix A – Retention

Hotel

_	[IN DIMENS	IONS	
PIPE I	DIAMETER ft.	PIPE VOLUME ft ³ /cs-ft	STONE VOID VOLUME ft ³ /cs-ft	TOTAL RETENTION STORAGE ft ³ /cs-ft	PERC VOLUME ft ³ /cs-ft	RETENTION STORAGE W/ PERC ft ³ /cs-ft	LENGTH OF TYPICAL CROSS SECTION ft.	TOTAL BASIN LENGTH ft ³ /cs-ft	CROSS SECTION WIDTH (TOTAL BASIN WIDTH) ft.	DEPTH OF STORAGE (NOT INCLUDING EARTH COVER) ft.	LINEAR FEET OF PIPE REQ'D (INC HEADER) ft.
12	1.00	2.36	2.71	5.07	3.33	8.40	1157	1161	7.00	1.50	3501
15	1.25	3.68	3.29	6.98	3.72	10.69	910	914	7.75	1.75	2759
18	1.50	5.30	3.90	9.20	4.10	13.30	731	736	8.50	2.00	2224
24	2.00	9.42	5.19	14.62	4.86	19.48	499	504	10.00	2.50	1528
30	2.50	14.73	8.59	23.32	6.46	29.78	327	332	13.50	3.00	1010
36	3.00	21.21	10.43	31.64	7.22	38.86	250	256	15.00	3.50	781
42	3.50	28.86	12.38	41.24	7.99	49.23	198	204	16.50	4.00	623
48	4.00	37.70	14.43	52.13	8.75	60.88	160	167	18.00	4.50	509
54	4.50	47.71	16.60	64.31	9.51	73.82	132	139	19.50	5.00	425
60	5.00	58.90	18.87	77.77	10.28	88.05	110	118	21.00	5.50	361

INPUT SIZE OF PIPES (ft): INPUT NUMBER OF ROWS OF PIPES: INPUT PERCOLATION RATE (ft/hr):

INPUT REQ'D. STORAGE VOLUME (cf):

Less storage volume of header (cf) Cross-Sect STORAGE VOLUME (cf):

4.00 3 0.42 9947 222 9725

Header Length (ft) = 15

(see table above for amount of pipe required)

Workforce Housing and Restaurant

								BAS	IN DIMENS	IONS	
PIPE in.	DIAMETER ft.	PIPE VOLUME ft ³ /cs-ft	STONE VOID VOLUME ft [°] /cs-ft	TOTAL RETENTION STORAGE ft ³ /cs-ft	PERC VOLUME ft ³ /cs-ft	RETENTION STORAGE W/ PERC ft ³ /cs-ft	LENGTH OF TYPICAL CROSS SECTION ft.	TOTAL BASIN LENGTH ft°/cs-ft	CROSS SECTION WIDTH (TOTAL BASIN WIDTH) ft.	DEPTH OF STORAGE (NOT INCLUDING EARTH COVER) ft.	LINEAR FEET OF PIPE REQ'D (INC HEADER) ft.
12	1.00	2.36	2.71	5.07	3.33	8.40	1312	1316	7.00	1.50	3965
15	1.25	3.68	3.29	6.98	3.72	10.69	1031	1035	7.75	1.75	3123
18	1.50	5.30	3.90	9.20	4.10	13.30	829	833	8.50	2.00	2517
24	2.00	9.42	5.19	14.62	4.86	19.48	566	571	10.00	2.50	1728
30	2.50	14.73	8.59	23.32	6.46	29.78	370	376	13.50	3.00	1141
36	3.00	21.21	10.43	31.64	7.22	38.86	284	290	15.00	3.50	881
42	3.50	28.86	12.38	41.24	7.99	49.23	224	230	16.50	4.00	702
48	4.00	37.70	14.43	52.13	8.75	60.88	181	188	18.00	4.50	573
54	4.50	47.71	16.60	64.31	9.51	73.82	149	157	19.50	5.00	478
60	5.00	58.90	18.87	77.77	10.28	88.05	125	133	21.00	5.50	406

INPUT SIZE OF PIPES (ft): INPUT NUMBER OF ROWS OF PIPES: INPUT PERCOLATION RATE (ft/hr):

INPUT REQ'D. STORAGE VOLUME (cf): Less storage volume of header (cf)

Cross-Sect STORAGE VOLUME (cf):

Header Length (ft) = 15

4 (see table above for amount of pipe required)

NOAA Atlas 14, Volume 6, Version 2 Location name: Lee Vining, California, USA* Latitude: 37.9477°, Longitude: -119.1105° Elevation: 6935.44 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

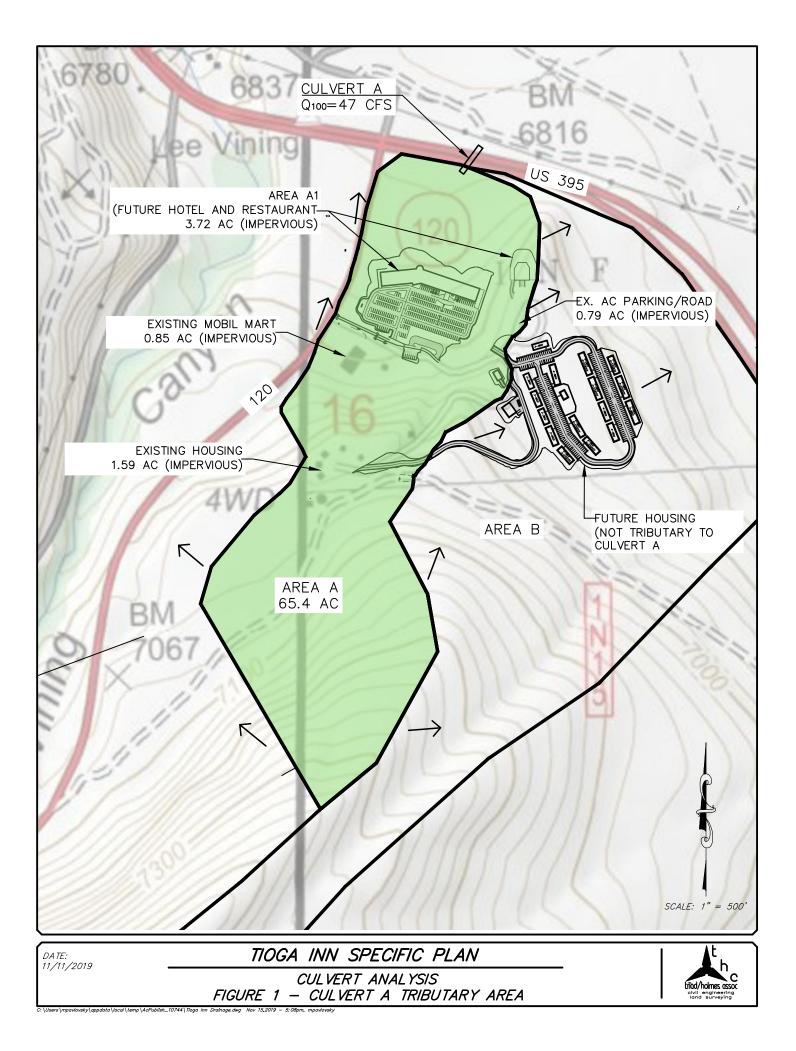
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

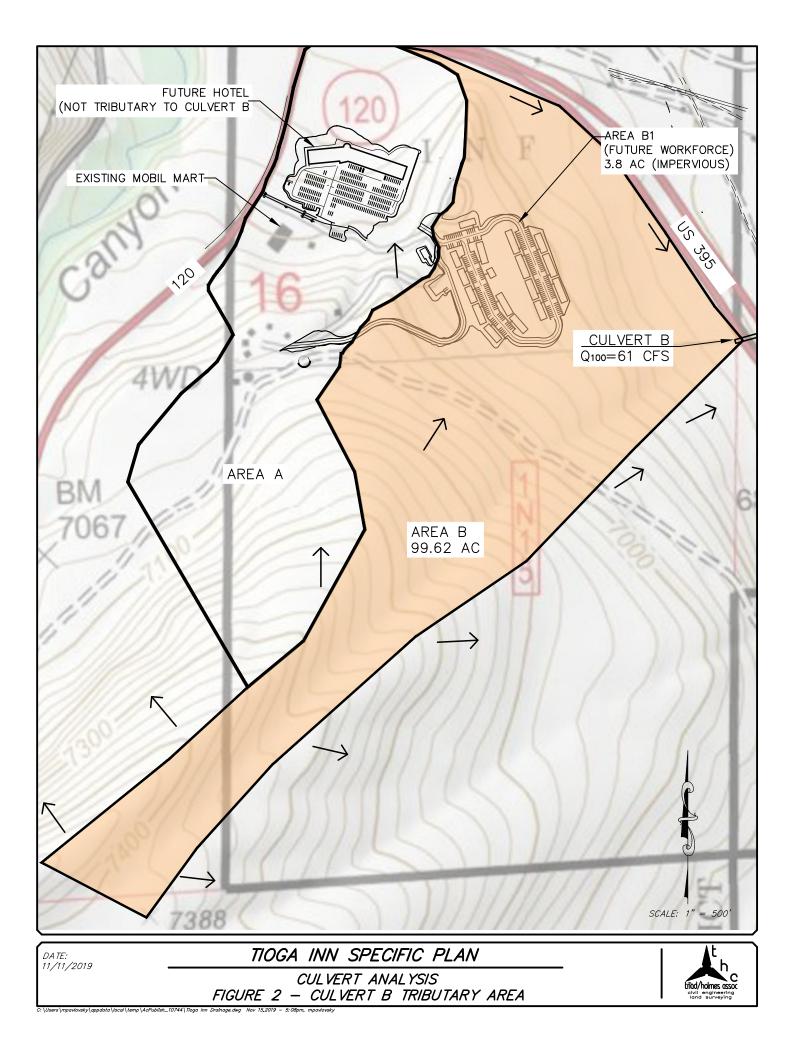
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

20 year 1 hour = 0.84 inches 2-year 24 hour = 2.17 inches

PF tabular


	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.109 (0.096-0.125)	0.141 (0.124-0.162)	0.186 (0.163-0.215)	0.226 (0.196-0.263)	0.285 (0.236-0.347)	0.334 (0.270-0.418)	0.388 (0.303-0.500)	0.447 (0.338-0.598)	0.536 (0.384-0.755)	0.611 (0.420-0.899
10-min	0.156 (0.137-0.179)	0.202 (0.177-0.232)	0.267 (0.234-0.308)	0.324 (0.281-0.378)	0.408 (0.339-0.497)	0.479 (0.387-0.599)	0.556 (0.435-0.717)	0.641 (0.484-0.858)	0.768 (0.551-1.08)	0.876 (0.601-1.29)
15-min	0.188 (0.166-0.216)	0.244 (0.215-0.280)	0.323 (0.283-0.372)	0.392 (0.339-0.457)	0.494 (0.410-0.601)	0.579 (0.467-0.724)	0.672 (0.526-0.867)	0.776 (0.586-1.04)	0.929 (0.666-1.31)	1.06 (0.727-1.56)
30-min	0.254 (0.224-0.292)	0.329 (0.289-0.378)	0.435 (0.381-0.502)	0.528 (0.458-0.616)	0.666 (0.552-0.810)	0.780 (0.630-0.976)	0.906 (0.709-1.17)	1.05 (0.790-1.40)	1.25 (0.898-1.77)	1.43 (0.981-2.10)
60-min	0.344 (0.303-0.395)	0.446 (0.392-0.512)	0.590 (0.517-0.680)	0.716 (0.620-0.834)	0.902 (0.748-1.10)	1.06 (0.854-1.32)	1.23 (0.961-1.59)	1.42 (1.07-1.90)	1.70 (1.22-2.39)	1.94 (1.33-2.85)
2-hr	0.481 (0.423-0.552)	0.616 (0.541-0.708)	0.806 (0.706-0.930)	0.971 (0.842-1.13)	1.21 (1.01-1.48)	1.41 (1.14-1.77)	1.63 (1.27-2.10)	1.87 (1.41-2.49)	2.21 (1.58-3.11)	2.50 (1.71-3.67)
3-hr	0.588 (0.517-0.674)	0.750 (0.659-0.861)	0.976 (0.855-1.13)	1.17 (1.01-1.37)	1.45 (1.21-1.77)	1.69 (1.36-2.11)	1.93 (1.51-2.50)	2.20 (1.66-2.95)	2.59 (1.86-3.65)	2.91 (2.00-4.28)
6-hr	0.837 (0.737-0.960)	1.06 (0.935-1.22)	1.38 (1.21-1.59)	1.64 (1.42-1.91)	2.02 (1.68-2.46)	2.32 (1.88-2.91)	2.65 (2.07-3.42)	2.99 (2.26-4.00)	3.48 (2.49-4.90)	3.87 (2.66-5.70)
12-hr	1.19 (1.05-1.37)	1.53 (1.34-1.76)	1.99 (1.74-2.29)	2.37 (2.05-2.76)	2.90 (2.41-3.53)	3.33 (2.69-4.16)	3.77 (2.95-4.87)	4.24 (3.20-5.67)	4.89 (3.50-6.89)	5.40 (3.71-7.95)
24-hr	1.67 (1.49-1.92)	2.17 (1.93-2.49)	2.84 (2.51-3.27)	3.39 (2.98-3.93)	4.15 (3.52-4.99)	4.75 (3.95-5.83)	5.37 (4.35-6.76)	6.01 (4.74-7.80)	6.91 (5.21-9.34)	7.61 (5.54-10.7)
2-day	2.10 (1.87-2.41)	2.73 (2.42-3.13)	3.57 (3.16-4.11)	4.27 (3.75-4.96)	5.23 (4.44-6.28)	5.97 (4.96-7.34)	6.74 (5.46-8.49)	7.55 (5.94-9.78)	8.65 (6.52-11.7)	9.51 (6.93-13.3)
3-day	2.29 (2.04-2.62)	2.99 (2.65-3.43)	3.92 (3.48-4.52)	4.69 (4.12-5.45)	5.75 (4.88-6.91)	6.57 (5.46-8.07)	7.41 (6.01-9.34)	8.29 (6.53-10.7)	9.49 (7.16-12.8)	10.4 (7.59-14.6)
4-day	2.46 (2.19-2.83)	3.22 (2.86-3.70)	4.24 (3.76-4.88)	5.08 (4.46-5.90)	6.22 (5.28-7.48)	7.11 (5.91-8.73)	8.02 (6.50-10.1)	8.97 (7.06-11.6)	10.3 (7.74-13.9)	11.3 (8.21-15.8)
7-day	2.78 (2.47-3.18)	3.65 (3.24-4.19)	4.81 (4.26-5.54)	5.77 (5.07-6.71)	7.09 (6.02-8.52)	8.11 (6.74-9.96)	9.14 (7.41-11.5)	10.2 (8.04-13.2)	11.7 (8.80-15.8)	12.8 (9.31-17.9)
10-day	2.92 (2.60-3.35)	3.85 (3.42-4.43)	5.11 (4.53-5.89)	6.15 (5.40-7.14)	7.57 (6.42-9.10)	8.66 (7.19-10.6)	9.77 (7.91-12.3)	10.9 (8.58-14.1)	12.4 (9.39-16.8)	13.6 (9.92-19.1)
20-day	3.73 (3.32-4.28)	4.97 (4.42-5.71)	6.64 (5.88-7.64)	7.99 (7.02-9.28)	9.85 (8.37-11.8)	11.3 (9.37-13.9)	12.7 (10.3-16.0)	14.2 (11.2-18.4)	16.1 (12.2-21.8)	17.6 (12.8-24.7)
30-day	4.23 (3.76-4.85)	5.68 (5.04-6.52)	7.61 (6.74-8.76)	9.18 (8.07-10.7)	11.3 (9.63-13.6)	13.0 (10.8-15.9)	14.6 (11.8-18.4)	16.2 (12.8-21.1)	18.4 (13.9-24.9)	20.0 (14.5-28.0)
45-day	5.09 (4.53-5.84)	6.85 (6.09-7.87)	9.18 (8.14-10.6)	11.1 (9.73-12.9)	13.6 (11.6-16.4)	15.6 (13.0-19.2)	17.5 (14.2-22.1)	19.4 (15.3-25.2)	21.9 (16.5-29.6)	23.7 (17.3-33.2)
60-day	5.75 (5.12-6.60)	7.77 (6.90-8.92)	10.4 (9.23-12.0)	12.6 (11.0-14.6)	15.4 (13.1-18.6)	17.6 (14.6-21.6)	19.8 (16.0-24.9)	21.9 (17.2-28.4)	24.6 (18.5-33.2)	26.5 (19.3-37.1)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

			F	Future Hotel and Restaurant				Future Workforce			
Dimens	Dimensionless Hydrograph		tp =	33	min	Cumulative	1	tp =	33	min	Cumulative
T/tc	Q/Qp	Qa/Qp	100 yr Q=	11.00	cfs dev	Volume		100 yr Q=	12.00	cfs dev	Volume
0	0	0	0	0.00	0.0			0	0.00	0.0	
0.1	0.03	0.001	3.3	0.33	11.6	12		3.3	0.36	12.5	12
0.2	0.1	0.006	6.6	1.10	47.9	59		6.6	1.20	51.8	64
0.3	0.19	0.017	9.9	2.09	104.0	163		9.9	2.28	112.7	177
0.4	0.31	0.035	13.2	3.41	176.6	340		13.2	3.72	191.6	368
0.5	0.47	0.065	16.5	5.17	272.3	612		16.5	5.64	295.7	664
0.6	0.66	0.107	19.8	7.26	391.1	1003		19.8	7.92	425.0	1089
0.7	0.82	0.163	23.1	9.02	509.9	1513		23.1	9.84	554.3	1643
0.8	0.93	0.228	26.4	10.23	602.3	2115		26.4	11.16	654.8	2298
0.9	0.99	0.3	29.7	10.89	661.7	2777		29.7	11.88	719.3	3017
1	1	0.375	33	11.00	688.1	3465		33	12.00	747.8	3765
1.1	0.99	0.45	36.3	10.89	691.4	4156		36.3	11.88	751.1	4516
1.2	0.93	0.522	39.6	10.23	671.6	4828		39.6	11.16	729.2	5245
1.3	0.86	0.589	42.9	9.46	632.0	5460		42.9	10.32	685.7	5931
1.4	0.78	0.65	46.2	8.58	585.8	6046		46.2	9.36	635.0	6566
1.5	0.68	0.705	49.5	7.48	529.7	6575		49.5	8.16	573.5	7139
1.6	0.56	0.751	52.8	6.16	460.4	7036		52.8	6.72	497.6	7637
1.7	0.46	0.79	56.1	5.06	391.1	7427		56.1	5.52	421.7	8058
1.8	0.39	0.822	59.4	4.29	338.3	7765		59.4	4.68	363.8	8422
1.9	0.33	0.849	62.7	3.63	298.7	8064		62.7	3.96	320.3	8742
2	0.28	0.871	66	3.08	265.7	8329		66	3.36	284.0	9026
2.2	0.207	0.908	72.6	2.28	230.0	8559		72.6	2.48	244.6	9271
2.4	0.147	0.934	79.2	1.62	192.7	8752		79.2	1.76	203.3	9474
2.6	0.107	0.953	85.8	1.18	166.3	8918		85.8	1.28	173.9	9648
2.8	0.077	0.967	92.4	0.85	149.8	9068		92.4	0.92	155.3	9804
3	0.055	0.977	99	0.61	139.3	9207		99	0.66	143.2	9947
3.2	0.04	0.984	105.6	0.44	133.7	9341		105.6	0.48	136.5	10083
3.4	0.029	0.989	112.2	0.32	131.7	9473		112.2	0.35	133.7	10217
3.6	0.021	0.993	118.8	0.23	132.0	9605		118.8	0.25	133.5	10351
3.8	0.015	0.995	125.4	0.17	134.0	9739		125.4	0.18	135.1	10486
4	0.011	0.997	132	0.12	137.3	9876		132	0.13	138.1	10624
4.5	0.005	0.999	148.5	0.06	145.5	10021]	148.5	0.06	146.0	10770
5	0	1	165	0.00	158.4	10180		165	0.00	158.6	10928
							-				

NOAA Atlas 14, Volume 6, Version 2 Location name: Lee Vining, California, USA* Latitude: 37.9458°, Longitude: -119.1114° Elevation: 7012.8 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹								/hour) ¹	
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	1.31 (1.15-1.50)	1.69 (1.49-1.94)	2.24 (1.97-2.58)	2.72 (2.36-3.17)	3.43 (2.84-4.18)	4.02 (3.25-5.03)	4.67 (3.65-6.02)	5.38 (4.07-7.19)	6.43 (4.61-9.07)	7.33 (5.03-10.8)
10-min	0.936 (0.822-1.07)	1.21 (1.07-1.39)	1.61 (1.41-1.85)	1.95 (1.69-2.27)	2.46 (2.04-2.99)	2.88 (2.33-3.60)	3.34 (2.62-4.31)	3.86 (2.91-5.15)	4.61 (3.31-6.50)	5.26 (3.61-7.73)
15-min	0.752 (0.664-0.864)	0.980 (0.860-1.12)	1.30 (1.14-1.49)	1.57 (1.36-1.83)	1.98 (1.64-2.41)	2.32 (1.88-2.90)	2.70 (2.11-3.48)	3.11 (2.35-4.16)	3.72 (2.66-5.24)	4.24 (2.91-6.24)
30-min	0.510 (0.448-0.584)	0.662 (0.582-0.760)	0.876 (0.768-1.01)	1.06 (0.922-1.24)	1.34 (1.11-1.63)	1.57 (1.27-1.96)	1.82 (1.43-2.35)	2.10 (1.59-2.81)	2.51 (1.80-3.54)	2.86 (1.96-4.21)
60-min	0.345	0.448	0.593	0.720	0.907	1.06	1.23	1.42	1.70	1.94
	(0.304-0.395)	(0.394-0.514)	(0.520-0.683)	(0.624-0.838)	(0.753-1.10)	(0.858-1.33)	(0.965-1.59)	(1.07-1.90)	(1.22-2.40)	(1.33-2.85)
2-hr	0.241	0.309	0.404	0.488	0.609	0.709	0.817	0.935	1.11	1.25
	(0.212-0.276)	(0.272-0.354)	(0.355-0.466)	(0.423-0.568)	(0.506-0.741)	(0.573-0.886)	(0.640-1.05)	(0.706-1.25)	(0.793-1.56)	(0.858-1.84)
3-hr	0.196 (0.173-0.225)	0.250 (0.220-0.287)	0.326 (0.286-0.376)	0.392 (0.340-0.456)	0.486 (0.404-0.591)	0.563 (0.455-0.704)	0.646 (0.506-0.833)	0.736 (0.556-0.984)	0.865 (0.620-1.22)	0.971 (0.666-1.43)
6-hr	0.140	0.178	0.231	0.275	0.339	0.390	0.443	0.501	0.582	0.648
	(0.123-0.160)	(0.157-0.205)	(0.202-0.266)	(0.239-0.320)	(0.281-0.412)	(0.315-0.487)	(0.347-0.572)	(0.378-0.670)	(0.418-0.821)	(0.445-0.955)
12-hr	0.099	0.127	0.165	0.197	0.242	0.278	0.314	0.353	0.407	0.451
	(0.087-0.114)	(0.112-0.146)	(0.145-0.191)	(0.171-0.230)	(0.201-0.295)	(0.224-0.347)	(0.246-0.406)	(0.267-0.473)	(0.292-0.574)	(0.309-0.663)
24-hr	0.070	0.091	0.119	0.142	0.174	0.199	0.225	0.252	0.289	0.319
	(0.062-0.080)	(0.081-0.104)	(0.105-0.137)	(0.125-0.165)	(0.148-0.209)	(0.165-0.244)	(0.182-0.283)	(0.199-0.327)	(0.218-0.391)	(0.232-0.447)
2-day	0.044	0.057	0.075	0.089	0.110	0.125	0.141	0.158	0.181	0.199
	(0.039-0.050)	(0.051-0.066)	(0.066-0.086)	(0.079-0.104)	(0.093-0.132)	(0.104-0.154)	(0.115-0.178)	(0.125-0.205)	(0.137-0.245)	(0.145-0.279)
3-day	0.032	0.042	0.055	0.066	0.081	0.092	0.104	0.116	0.133	0.146
	(0.029-0.037)	(0.037-0.048)	(0.049-0.063)	(0.058-0.076)	(0.068-0.097)	(0.077-0.113)	(0.084-0.131)	(0.091-0.150)	(0.100-0.180)	(0.106-0.205)
4-day	0.026	0.034	0.045	0.053	0.066	0.075	0.084	0.094	0.108	0.119
	(0.023-0.030)	(0.030-0.039)	(0.040-0.051)	(0.047-0.062)	(0.056-0.079)	(0.062-0.092)	(0.068-0.106)	(0.074-0.122)	(0.081-0.146)	(0.086-0.166)
7-day	0.017	0.022	0.029	0.035	0.043	0.049	0.055	0.062	0.071	0.077
	(0.015-0.019)	(0.020-0.025)	(0.026-0.034)	(0.031-0.041)	(0.036-0.051)	(0.041-0.060)	(0.045-0.070)	(0.049-0.080)	(0.053-0.095)	(0.056-0.108)
10-day	0.012	0.016	0.022	0.026	0.032	0.037	0.041	0.046	0.053	0.058
	(0.011-0.014)	(0.015-0.019)	(0.019-0.025)	(0.023-0.030)	(0.027-0.039)	(0.031-0.045)	(0.034-0.052)	(0.036-0.060)	(0.040-0.071)	(0.042-0.081)
20-day	0.008	0.011	0.014	0.017	0.021	0.024	0.027	0.030	0.034	0.037
	(0.007-0.009)	(0.009-0.012)	(0.013-0.016)	(0.015-0.020)	(0.018-0.025)	(0.020-0.029)	(0.022-0.034)	(0.024-0.039)	(0.026-0.046)	(0.027-0.052)
30-day	0.006	0.008	0.011	0.013	0.016	0.018	0.021	0.023	0.026	0.028
	(0.005-0.007)	(0.007-0.009)	(0.010-0.013)	(0.012-0.015)	(0.014-0.019)	(0.015-0.023)	(0.017-0.026)	(0.018-0.030)	(0.020-0.035)	(0.021-0.040)
45-day	0.005	0.007	0.009	0.011	0.013	0.015	0.017	0.018	0.021	0.022
	(0.004-0.006)	(0.006-0.008)	(0.008-0.010)	(0.009-0.012)	(0.011-0.016)	(0.012-0.018)	(0.014-0.021)	(0.015-0.024)	(0.016-0.028)	(0.016-0.032)
60-day	0.004	0.006	0.008	0.009	0.011	0.013	0.014	0.016	0.018	0.019
	(0.004-0.005)	(0.005-0.006)	(0.007-0.009)	(0.008-0.010)	(0.009-0.013)	(0.010-0.015)	(0.011-0.018)	(0.012-0.020)	(0.013-0.024)	(0.014-0.026)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Figure 819.2A

Runoff Coefficients for Undeveloped Areas Watershed Types

	Extreme	High	Normal	Low		
Relief	.2835	.2028	.1420	.0814		
	Steep, rugged terrain with average slopes above 30%	Hilly, with average slopes of 10 to 30%	Rolling, with average slopes of 5 to 10%	Relatively flat land, with average slopes of 0 to 5%		
Soil	.1216	.0812	.0608	.0406		
Infiltration	No effective soil cover, either rock or thin soil mantle of negligible infiltration capacity	Slow to take up water, clay or shallow loam soils of low infiltration capacity, imperfectly or poorly drained	Normal; well drained light or medium textured soils, sandy loams, silt and silt loams	High; deep sand or other soil that takes up water readily, very light well drained soils		
Vegetal	.1216	.0812	.0608	.0406		
Cover	No effective plant cover, bare or very sparse cover	Poor to fair; clean cultivation crops, or poor natural cover, less than 20% of drainage area over good cover	Fair to good; about 50% of area in good grassland or woodland, not more than 50% of area in cultivated crops	Good to excellent; about 90% of drainage area in good grassland, woodland or equivalent cover		
Surface	.1012	.0810	.0608	.0406		
Storage	Negligible surface depression few and shallow; drainageways steep and small, no marshes	Low; well defined system of small drainageways; no ponds or marshes	Normal; considerable surface depression storage; lakes and pond marshes	High; surface storage, high; drainage system not sharply defined; large floodplain storage or large number of ponds or marshes		
Given	An undeveloped wate 1) rolling terrain wit 2) clay type soils, 3) good grassland ar 4) normal surface de	th average slopes of 5%, rea, and	Solution: Relief Soil Infiltrati Vegetal Cove Surface Stora	er 0.04		
Find	The runoff coefficient watershed.	, C, for the above		0-0.52		

Table 819.2B

Runoff Coefficients for Developed Areas ⁽¹⁾

Type of Drainage Area	Runoff
1)]] 01 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20	Coefficient
Business:	
Downtown areas	0.70 - 0.95
Neighborhood areas	0.50 - 0.70
Residential:	
Single-family areas	0.30 - 0.50
Multi-units, detached	0.40 - 0.60
Multi-units, attached	0.60 - 0.75
Suburban	0.25 - 0.40
Apartment dwelling areas	0.50 - 0.70
Industrial:	
Light areas	0.50 - 0.80
Heavy areas	0.60 - 0.90
Parks, cemeteries:	0.10 - 0.25
Playgrounds:	0.20 - 0.40
Railroad yard areas:	0.20 - 0.40
Unimproved areas:	0.10 - 0.30
Lawns:	
Sandy soil, flat, 2%	0.05 - 0.10
Sandy soil, average, 2-7%	0.10 - 0.15
Sandy soil, steep, 7%	0.15 - 0.20
Heavy soil, flat, 2%	0.13 - 0.17
Heavy soil, average, 2-7%	0.18 - 0.22
Heavy soil, steep, 7%	0.25 - 0.35
Streets:	
Asphaltic	0.70 - 0.95
Concrete	0.80 - 0.95
Brick	0.70 - 0.85
Drives and walks	0.75 - 0.85
Roofs:	0.75 - 0.95
NOTES.	

NOTES:

(1) From HDS No. 2.

regression equations are considered the best estimates of flood frequency and are used to reduce the time-sampling error that may occur in a station flood-frequency estimate.

- (d) The flood-frequency flows and the maximum peak discharges at several stations in a region should be used whenever possible for comparison with the peak discharge estimated at an ungaged site using a rainfall-runoff approach or regional regression equation. The watershed characteristics at the ungaged and gaged sites should be similar.
- (4) National Resources Conservation Service The Soil Conservation (NRCS) Methods. Service's SCS (former title) National Engineering Handbook, 1972, and their 1975, "Urban Hydrology for Small Watersheds", Technical Release 55 (TR-55), present a graphical method for estimating peak discharge. Most NRCS equations and curves provide results in terms of inches of runoff for unit hydrograph development and are not applicable to the estimation of a peak design discharge unless the design hydrograph is first developed in accordance with prescribed NRCS methods and NRCS procedures. procedures are applicable to drainage areas less than 3 square miles (approx. 2,000 acres) and result in a design hydrograph and design discharge that are functionally acceptable to form the basis for the design of highway drainage facilities.

819.3 Statistical Methods

Statistical methods of predicting stream discharge utilize numerical data to describe the process. Statistical methods, in general, do not require as much subjective judgment to apply as the previously described deterministic methods. They are usually well documented mathematical procedures which are applied to measured or observed data. The accuracy of statistical methods can also be measured quantitatively. However, to assure that statistical method results are valid, the method and procedures used should be verified by an experienced engineer with a thorough knowledge of engineering statistics.

The use of flow length alone as a limiting factor for the Kinematic wave equation can lead to circumstances where the underlying assumptions are no longer valid. Over prediction of travel time can occur for conditions with significant amounts of depression storage, where there is a high Manning's n-value or for flat slopes. One study suggests that the upper limit of applicability of the Kinematic wave equation is a function of flow length, slope and Manning's roughness coefficient. This study used both field and laboratory data to propose an upper limit of 100 for the composite parameter of $nL/s^{1/2}$. It is recommended that this criteria be used as a check where the designer has uncertainty on the maximum flow length to which the Kinematic wave equation can be applied to project conditions.

Where sheet flow travel distance cannot be determined, a conservative alternative is to assume shallow concentrated flow conditions without an independent sheet flow travel time conditions. See Index 816.6(2).

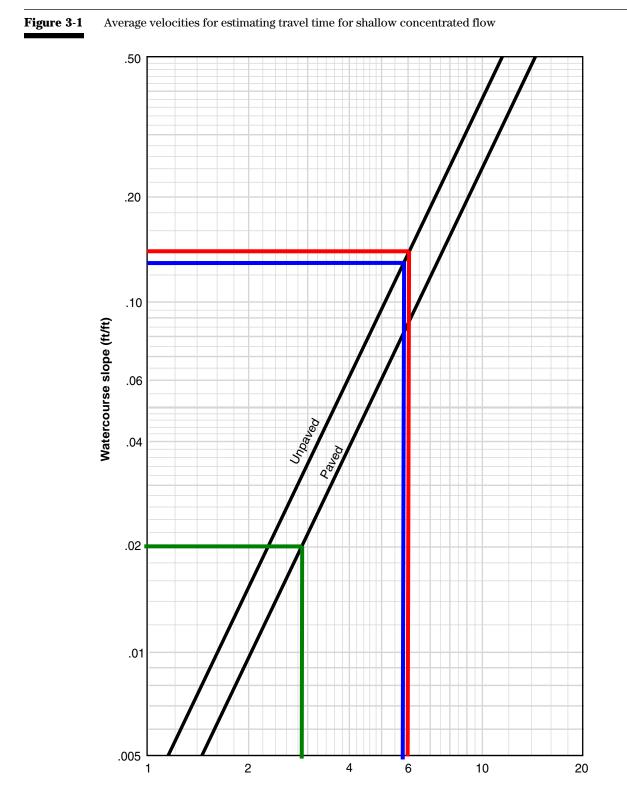
Table 816.6A Roughness Coefficients For Sheet Flow

п
0.011-
0.016
0.012-
0.014
0.014
0.024
0.05
0.15
0.24
0.41
0.40
0.80

 Woods cover is considered up to a height of 1 inch, which is the maximum depth obstructing sheet flow.

(2) Shallow concentrated flow travel time. After short distances, sheet flow tends to concentrate in rills and gullies, or the depth exceeds the range where use of the Kinematic wave equation applies. At that point the flow becomes defined as shallow concentrated flow. The Upland Method is commonly used when calculating flow velocity for shallow concentrated flow. This method may also be used to calculate the total travel time for both the sheet flow and the shallow concentrated flow segments under certain conditions (e.g., where use of the Kinematic wave equation to predict sheet flow travel time is questionable, or where the designer cannot reasonably identify the point where sheet flow transitions to shallow concentrated flow).

Average velocities for the Upland Method can be taken directly from Figure 816.6 (Source NRCS, National Engineering Handbook part 650) or may be calculated from the following equation:


$$V = (3.28) \text{ kS}^{1/2}$$

Where S is the slope in percent and k is an intercept coefficient depending on land cover as shown in Table 816.6B. It is assumed that the depth range is 0.1 to 0.2 feet, except for grassed waterways, where the depth range is 0.1 to 0.4 feet,

Table 816.6B Intercept Coefficients for Shallow Concentrated Flow

Land cover/Flow regime	k
Forest with heavy ground litter; hay meadow	0.076
Trash fallow or minimum tillage cultivation; contour or strip cropped; woodland	0.152
Short grass pasture	0.213
Cultivated straight row	0.274
Nearly bare and untilled alluvial fans	0.305
Grassed waterway	0.457
Pavement and small upland gullies	0.620

Technical Release 55 Urban Hydrology for Small Watersheds

Average velocity (ft/sec)